% % This file was created by the Typo3 extension % sevenpack version 0.7.16 % % --- Timezone: CEST % Creation date: 2022-07-07 % Creation time: 03-11-04 % --- Number of references % 33 % @Mastersthesis { Junkereit2020, title = {Erstellung eines methodischen Vorgehens zur Bestimmung des Sicherheitsniveaus generischer Lastsimulationsmodelle f{\"u}r die analytische Weiterbetriebsbegutachtung von Windenergieanlagen}, year = {2020}, month = {10}, day = {13}, note = {Bachelor 1445}, school = {TU Berlin}, type = {Bachelor}, author = {Junkereit, Christoph} } @Mastersthesis { Jaeschke2020, title = {Development of an Acetone-PLIF system for fuel concentration measurements in a shockless explosion combustor}, year = {2020}, month = {9}, day = {7}, abstract = {The optimization of modern gas turbines with an increased scope on efficiency is of particular importance to further reduce the environmental footprint of power generation. Shockless explosion combustion aims for a homogeneous autoignition to improve the thermodynamic cycle in modern gas turbine combustion. The exact control of the equivalence ratio stratification prior to ignition is crucial for the effective implementation. Within this work the fuel concentration distribution inside the shockless explosion combustor is investigated. Therefore, an acetone planar laser-induced fluorescence system has been developed. The applied measurement technique utilizes the laser induced fluorescence of acetone tracer particles, seeded into a gaseous methane flow. The fluorescence intensity depends linearly on the acetone presence in the doped fuel. The laser excites the acetone in the ultra-violet range of light at a wavelength of 266 nm. An intensified camera captures the red-shifted emitted fluorescence. To validate the linearity of the fluorescence intensity, the characteristics of the acetone fluorescence are investigated. Subsequently, suitable operating parameters for the employed laser system are identified to maximize the measured fluorescence intensity. In a preliminary test on a free jet configuration, the range of possible operating conditions of the acetone seeding system are examined. Therefore, the acetone seeder is tested at different acetone fluid levels. The reliability of the acetone seeder is found to be a function of the methane mass flow which is bubbled through the acetone. The function is defined by the ratio between the present amount of gaseous fuel and acetone and the seeder capacity. The excess of a certain threshold of this ratio provokes a push out of the acetone. In consideration of these findings, the acetone seeder is adjusted to the operating conditions of the shockless explosion combustor and integrated into the test rig. The qualitative measurements of the fuel concentration distributions are conducted for different shapes of injected fuel profiles with a varying amount of fuel. The experiments are examined under isothermal, atmospheric operating conditions. All fuel profiles are injected into an air mass flow of 50 kg/h, temperature regulated to 308 K. The obtained two-dimensional fuel concentration distributions are parabolic shaped in the radial direction, which might be related to the parabolic assumed shape of the air flow velocity profile. Additionally, the influence of the injected fuel profile gradient on the received concentration distribution is revealed. The effect of the dispersion on the measured fuel distribution is investigated by an one-dimensional numerical analysis of the injected fuel profiles. The numerical solution of the dispersion equation agrees well with the contrasted experimental data. Differences between the experimental and numerical concentration distributions confirm the influence of the injected fuel profile gradient. In addition, the identified dispersion coefficients are compared to existing experimental data of mixing experiments that are an excellent match for them. Finally, quantitative measurement techniques are analyzed for their applicability.}, note = {Master 1451}, school = {TU Berlin}, type = {Master}, author = {Jaeschke, Alexander} } @Mastersthesis { Jiménez2019, title = {Wobbe index variation in gas turbines_Evaluation of the combustion process and plant design}, year = {2019}, month = {2}, day = {11}, note = {Master 1390}, annotation = {Sperrvermerk}, school = {TU Berlin, Siemens AG}, type = {Master}, author = {Jim{\'e}nez, Maria Isabel Rebolledo} } @Mastersthesis { Jahnke2018, title = {Analyse des Schwingungsverhaltens einer Forschungswindenergieanlage und Neuauslegung der Lagerung sowie des Antriebsstranges}, year = {2018}, month = {5}, day = {31}, note = {Master 1377}, school = {TU Berlin}, type = {Master}, author = {Jahnke, Alexander} } @Mastersthesis { Jelinek2016, title = {Uncertainty assessment of gas-turbine efficiency prediction: Impact of geometrical and thermodynamical boundary conditions}, year = {2016}, month = {7}, day = {14}, note = {Master 1259}, annotation = {Sperrvermerk 13.07.2021}, school = {TU Berlin, Siemens AG}, type = {Master}, author = {Jelinek, Erik} } @Mastersthesis { Jahnke2016, title = {Anwendung und Vergleich zweier Methoden zur relativen Dichtefeldbestimmung aus PIV-Daten einer drallstabiliserten turbulenten Flamme}, year = {2016}, month = {5}, day = {24}, note = {Bachelor 1217}, school = {TU Berlin}, type = {Bachelor}, author = {Jahnke, Alexander} } @Phdthesis { Jozefik2016, title = {Application of ODT to turbulent combustion problems in incompressible and compressible regimes}, year = {2016}, month = {5}, day = {10}, abstract = {Das one-dimensional turbulence (ODT) Modell wird f{\"u}r die Simulation (1) eines Gegenstrom-Systems, in dem eine von links kommende Str{\"o}mung mit unverbrannten Reaktanten auf eine von rechts kommende Str{\"o}mung mit verbrannten Reaktionsprodukten trifft, und (2) einer nicht reaktiven und reaktiven Sto{\ss}rohr-Konfiguration angewendet. Hierbei werden Gleichungen f{\"u}r Impuls, Energie und Spezies auf einer 1D Linie durch das Str{\"o}mungsgebiet gel{\"o}st, die der Mittellinie zwischen den beiden D{\"u}sen in der Gegenstrom- Konfiguration bzw. der Mittelinie des Rohres in der Sto{\ss}rohr-Konfiguration entspricht. Die turbulente Mischung der gro{\ss}en Skalen ist durch einen stochastischen Ansatz modelliert, w{\"a}hrend die kleinsten physikalischen Skalen, Kolmogorov-Skalen, sowie die reaktiven L{\"a}ngen- und Zeitskalen explizit aufgel{\"o}st sind. Die ODT-Ergebnisse f{\"u}r die Gegenstrom-Konfiguration wurden mit DNS Ergebnissen verglichen. R{\"a}umliche Mittel und quadratische Mittel der Geschwindigkeit, Temperatur sowie Major- und Minorspezies zeigen eine vern{\"u}nftige qualitative und quantitative {\"U}bereinstimmung mit den DNS-Daten. Au{\ss}erdem wurden Streudiagramme und Statistiken der W{\"a}rmefreisetzung in Abh{\"a}ngigkeit von der Temperatur und alle Spezies verglichen. Mit dem ODT-Ansatz konnte die Mehrzahl von DNS-Ergebnissen nachgebildet werden, dennoch zeigen einige Statistiken eine gewisse Untersch{\"a}tzung in der Z{\"u}ndungsrate. Um die Sto{\ss}rohr-Simulationen ausf{\"u}hren zu k{\"o}nnen, wurde die inkompressible ODT-Implementierung um einem effizienten algorithmus f{\"u}r kompressibel Str{\"o}mung erweitert und ein Modell zur Repr{\"a}sentation schockgenerierter Turbulenz wurde entwickelt. Die ben{\"o}tigten {\"A}nderungen der Implementierung werden hervorgehoben und das entwickelte Modell wird beschrieben. Zur Validierung des kompressiblen L{\"o}sers werden Ergebnisse f{\"u}r das von Sod beschriebene Riemann-Problem mit Ergebnissen eines Riemann-L{\"o}sers verglichen. F{\"u}r die Validierung des Modells zur Darstellung Schock-generierter Turbulenz werden Ergebnisse f{\"u}r nicht reaktive sowie reaktive F{\"a}lle gezeigt. Zuerst wird ein nicht reaktives Sto{\ss}rohr mit Reschock betrachtet, in dem ein Schock aus einer Mischung geringer Dichte (Luft) in eine Mischung hoher Dichte (Schwefelhexafluorid) l{\"a}uft. Die ODT-Parameter sind entsprechend der Mischzonenausbreitung aus Versuchsdaten und entsprechend turbulenter kinetischer Energie aus LES-Daten abgestimmt. Als zweites Beispiel wird ein reaktives Sto{\ss}rohr inklusive reflektive Schock simuliert. Eine Flamme wird in der Mitte des Rohrs initialisiert und beginnt sich auszubreiten w{\"a}hrend ein Schock auf sie zukommt. Ergebnisse f{\"u}r die Bildung der Mischzone und schlie{\ss}lichem Deflagrations-Detonations-Transition (DDT) wurden mit hoch aufgel{\"o}sten 2D Simulationen (2D-Sim) verglichen. Vergleiche f{\"u}r Sods Sto{\ss}rohr zeigen, dass die Verdichtungssto{\ss}geschwindigkeit und das Schockprofil gut wiedergegeben werden. Vergleiche f{\"u}r das nicht reaktive Sto{\ss}rohr zeigen, dass die Ausbreitung der Mischzonen f{\"u}r die betrachteten Mach-Zahlen korrekt erfasst werden und, dass die turbulente kinetische Energie der Gr{\"o}{\ss}enordnung nach mit LES-Daten {\"u}bereinstimmt. Vergleiche f{\"u}r die reaktiven Sto{\ss}rohrergebnisse zeigen, dass die Ausbreitung der Mischzonen {\"u}ber die Zeit korrekt erfasst wird und, dass die ungef{\"a}hre Zeit und Position f{\"u}r DDT in ODT mit denen der 2D-sim {\"u}bereinstimmt. Da DDT stark von den Feinheiten den einzelnen Simulationen abh{\"a}ngt, kann ODT nur durch einzelne Simulationen validiert werden, nicht durch ein Ensemble von Simulationen. The one-dimensional turbulence (ODT) model is applied to a reactant - to - product counterflow configuration as well as to a shock tube configuration in non-reactive flow and in deflagration and detonation regimes. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers in the counterflow configuration and corresponding to the tube length in the shock tube configuration. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved. In the counterflow configuration, comparisons between model and DNS results for spatial mean and root-mean-square (RMS) velocity, temperature, and major and minor species profiles are shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition. To carry out the shock tube simulations, the ODT methodology is extended to include an efficient compressible implementation and a model for capturing shock-induced turbulence is presented. The necessary algorithmic changes to include compressibility effects are highlighted and the model for capturing shock-turbulence interaction is presented. To validate the compressible solver, results for Sod's shock tube problem are compared against a finite volume Riemann solver. To validate the model for shock-turbulence interaction, comparisons for a non-reactive and a reactive case are presented. First, results of a shock traveling from light (air) to heavy (SF6) with reshock have been simulated to match mixing width growth data of experiments and turbulent kinetic energy results from LES. Then, for one-step chemistry calibrated to represent an acetylene/air mixture, the interaction of a shock wave with an expanding flame front is simulated, and results with 2D simulation (2D-sim) data for flame brush formation and ensuing deflagration-to-detonation transitions (DDT) are compared. Results for the Sod shock tube comparison show that the shock speed and profile are captured accurately. Results for the nonreactive shock-reshock problem show that interface growth at all simulated Mach numbers is captured accurately and that the turbulent kinetic energy agrees in order of magnitude with LES data. The reactive shock tube results show that the flame brush thickness compares well to 2D-sim data and that the approximate location and timing of the DDT can be captured. The known sensitivity of DDT characteristics to details of individual Wow realizations, seen also in ODT, implies that model agreement can be quantified only by comparing Wow ensembles, which are presently unavailable other than in an ODT run-to-run sensitivity study that is reported herein.}, note = {Dissertation 1316}, url = {https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/3865}, school = {BTU Cottbus, TU Berlin}, type = {Dissertation}, author = {Jozefik, Zoltan} } @Mastersthesis { BugschatJahnke2015, title = {Entwicklung eines Versuchsaufbaus im Schleppkanal zur str{\"o}mungsmechanischen Untersuchung stumpfer K{\"o}rper in Bodenn{\"a}he}, year = {2015}, month = {10}, day = {12}, note = {Bachelor 1208}, school = {TU Berlin}, type = {Bachelor}, author = {Bugschat, Christoph and Jahnke, Alexander} } @Mastersthesis { Jekosch2015, title = {Implementation and experimental validation of a neural network architecture for the system modelling and performance boosting evaluatation of aerodynamic retrofit solutions on utility scale wind turbines}, year = {2015}, month = {7}, day = {23}, note = {Master 1200}, school = {TU Berlin}, type = {Master}, author = {Jekosch, Simon} } @Mastersthesis { Jung2013, title = {Experimentelle und numerische Analyse eines Pinguins im Hinblick auf die Anwendung in der Automobilaerodynamik}, year = {2013}, month = {6}, day = {25}, note = {Master 1069}, school = {TU Berlin}, type = {Master}, author = {Jung, Jakob Johannes} } @Mastersthesis { Buschbeck2012, title = {Fluid Mechanical Optimization of Electric Motor Cooling}, year = {2012}, note = {Bachelorarbeit 1000}, annotation = {Bombardier Transportation, Sperrvermerk bis 31.05.2015}, school = {TU Berlin}, type = {Bachelorarbeit}, author = {Jan, Buschbeck} } @Phdthesis { Juergens2006, title = {Untersuchung der beeinflussten Str{\"o}mung {\"u}ber eine gepfeilte, r{\"u}ckspringende Stufe mittels Stabilit{\"a}tsanalyse und numerischer Simulation}, year = {2006}, note = {Dissertation 940}, url = {http://opus.kobv.de/tuberlin/volltexte/2006/1408/}, school = {TU Berlin}, type = {Dissertation}, author = {J{\"u}rgens, Werner} } @Mastersthesis { Judel1998, title = {Untersuchungen zum Einflu{\ss} von Str{\"o}mungsfeld und Partikelkonzentration auf den Ablauf von Staubexplosionen}, year = {1998}, note = {Diplomarbeit 639}, school = {TU Berlin}, type = {Diplomarbeit}, author = {Judel, P.} } @Phdthesis { Janke1993, title = {{\"U}ber die Grundlagen und einige Anwendungen der {\"O}lfilminterferometrie zur Messung von Wandreibungsfeldern in Luftstr{\"o}mungen}, year = {1993}, note = {Dissertation 620}, school = {TU Berlin}, type = {Dissertation}, author = {Janke, G.} } @Phdthesis { Janke1992, title = {{\"U}ber die Grundlagen und einige Anwendungen der {\"O}lfilminterferometrie zur Messung von Wandreibungsfeldern in Luftstr{\"o}mungen}, year = {1992}, note = {Dissertation 581 I,474}, school = {TU Berlin}, type = {Dissertation}, author = {Janke, G.} } @Mastersthesis { Jakob1989, title = {Die theoretische Untersuchung der reibungsfreien Instabilit{\"a}t eines Wandgrenzschichtgeschwindigkeitsprofils in Abl{\"o}sen{\"a}he}, year = {1989}, note = {Diplomarbeit 573 613}, school = {TU Berlin}, type = {Diplomarbeit}, author = {Jakob, J.} } @Phdthesis { Jaroch1987, title = {Eine kritische Betrachtung der Methode diskreter Wirbel als Modell f{\"u}r eine abgel{\"o}ste Str{\"o}mung mit geschlossener Abl{\"o}seblase auf der Basis experimenteller Erkenntnisse}, year = {1987}, note = {Dissertation I.433}, school = {TU Berlin}, type = {Dissertation}, author = {Jaroch, M.} } @Mastersthesis { Janke1984, title = {Untersuchung eines Hitzdrahtes in Wandn{\"a}he}, year = {1984}, note = {Diplomarbeit 523}, school = {TU Berlin}, type = {Diplomarbeit}, author = {Janke, G.} } @Mastersthesis { John1983, title = {Mathematische Methode der Thermo- und Fluiddynamik}, year = {1983}, note = {Studienarbeit 521}, school = {TU Berlin}, type = {Studienarbeit}, author = {John, D.} } @Mastersthesis { Jaroch1982, title = {Charakteristische L{\"a}ngen der Turbulenz:Bestimmung, physikalische Bedeutung und Messungen im zwei ausgew{\"a}hlten Str{\"o}mungen}, year = {1982}, note = {Diplomarbeit 516}, school = {TU Berlin}, type = {Diplomarbeit}, author = {Jaroch, M.} } @Mastersthesis { Jodelsberger1973, title = {Untersuchung zu Fragen der Simulation einer atmosph{\"a}rischen Grenzschicht im Windkanal}, year = {1973}, note = {Diplomarbeit 398}, school = {TU Berlin}, type = {Diplomarbeit}, author = {Jodelsberger, G. and Maier, F.} } @Miscellaneous { Jischa1970, title = {Ein Integralverfahren zur Berechnung der laminaren Plattengrenzschicht mit Nichtgleichgewichts-Dissoziation und beliebiger Katalysatorwirkung der Wand}, year = {1970}, note = {Habilitation 377}, school = {TU Berlin}, type = {Habilitation}, author = {Jischa, M.} } @Phdthesis { Jauch1969, title = {Verbesserung des Teillastverhaltens von Gasturbinenbrennkammern durch lastabh{\"a}ngige {\"A}nderung der Luftquerschnitte im Flammrohr}, year = {1969}, note = {Dissertation 346}, school = {TU Berlin}, type = {Dissertation}, author = {Jauch, F.} } @Mastersthesis { Jungclaus1968, title = {Drallstr{\"o}mung im Rohr}, year = {1968}, note = {Diplomarbeit 317}, school = {TU Berlin}, type = {Diplomarbeit}, author = {Jungclaus, D.} } @Mastersthesis { Jordan1966, title = {Str{\"o}mungsvorg{\"a}nge beim Ladungswechsel eines Gro{\ss}beh{\"a}lters}, year = {1966}, note = {Diplomarbeit 279}, school = {TU Berlin}, type = {Diplomarbeit}, author = {Jordan, K.} } @Miscellaneous { Johannsen1966, title = {Zum Stand der Entwicklung schneller Brutreaktionen}, year = {1966}, note = {Habilitation 269}, school = {TU Berlin}, type = {Habilitation}, author = {Johannsen, K.} } @Mastersthesis { Jordan1965, title = {Untersuchungen am K{\"u}hlluftkanal der Roirant-Maschine R7}, year = {1965}, note = {Studienarbeit 263}, school = {TU Berlin}, type = {Studienarbeit}, author = {Jordan, K.} } @Mastersthesis { Hamadi1964, title = {Theoretische und experimentelle Untersuchungen von Str{\"o}mungen in 90\(^{\circ}\)-Klothoiden- und Kreisbogenkr{\"u}mmern}, year = {1964}, note = {Studienarbeit 239}, school = {TU Berlin}, type = {Studienarbeit}, author = {Hamadi, K. and Jazigi, A.} } @Phdthesis { Jildiz1964, title = {Zum W{\"a}rme{\"u}bergang am Kommutator (Eine experimentelle Untersuchung)}, year = {1964}, note = {Dissertation 237}, school = {TU Berlin}, type = {Dissertation}, author = {Jildiz, A.} } @Mastersthesis { Jeromin1963, title = {Untersuchungen an einer Frigen-113-Hochgeschwindigkeitsanlage}, year = {1963}, note = {Diplomarbeit 195}, school = {TU Berlin}, type = {Diplomarbeit}, author = {Jeromin, L.} } @Mastersthesis { Jastram1963, title = {Untersuchungen zur Auslegung einer Strahlpumpe}, year = {1963}, note = {Diplomarbeit 182}, school = {TU Berlin}, type = {Diplomarbeit}, author = {Jastram, P.} } @Phdthesis { Johannsen1963, title = {Keramische Oxydschmelzen als L{\"o}sungsmittel f{\"u}r den Spaltstoff homogener Hochtemperaturkernreaktoren}, year = {1963}, note = {Dissertation 172}, school = {TU Berlin}, type = {Dissertation}, author = {Johannsen, K.} } @Mastersthesis { Janke1950, title = {Widerstandsbeiwert in einem Knie}, year = {1950}, note = {Studienarbeit 7}, school = {TU Berlin}, type = {Studienarbeit}, author = {Janke, W.} }